12 research outputs found

    Saturated Ferromagnetism from Statistical Transmutation in Two Dimensions

    Full text link
    The total spin of the ground state is calculated in the U -> infinity Hubbard model with uniform magnetic flux perpendicular to a square lattice, in the absence of Zeeman coupling. It is found that the saturated ferromagnetism emerges in a rather wide region in the space of the flux density \phi and the electron density n_e. In particular, the saturated ferromagnetism at \phi = n_e is induced by the formation of a spin-1/2 boson, which is a composite of an electron and the unit flux quantum.Comment: 4 pages, 3 figures; final versio

    Exact Dynamics of the SU(K) Haldane-Shastry Model

    Full text link
    The dynamical structure factor S(q,ω)S(q,\omega) of the SU(K) (K=2,3,4) Haldane-Shastry model is derived exactly at zero temperature for arbitrary size of the system. The result is interpreted in terms of free quasi-particles which are generalization of spinons in the SU(2) case; the excited states relevant to S(q,ω)S(q,\omega) consist of K quasi-particles each of which is characterized by a set of K-1 quantum numbers. Near the boundaries of the region where S(q,ω)S(q,\omega) is nonzero, S(q,ω)S(q,\omega) shows the power-law singularity. It is found that the divergent singularity occurs only in the lowest edges starting from (q,ω)=(0,0)(q,\omega) = (0,0) toward positive and negative q. The analytic result is checked numerically for finite systems via exact diagonalization and recursion methods.Comment: 35 pages, 3 figures, youngtab.sty (version 1.1

    Exact spin dynamics of the 1/r^2 supersymmetric t-J model in a magnetic field

    Full text link
    The dynamical spin structure factor S^{zz}(Q,omega) in the small momentum region is derived analytically for the one-dimensional supersymmetric t-J model with 1/r^2 interaction. Strong spin-charge separation is found in the spin dynamics. The structure factor S^{zz}(Q,omega) with a given spin polarization does not depend on the electron density in the small momentum region. In the thermodynamic limit, only two spinons and one antispinon (magnon) contribute to S^{zz}(Q,omega). These results are derived via solution of the SU(2,1) Sutherland model in the strong coupling limit.Comment: 20 pages, 8 figures. Accepted for publication in J.Phys.

    Electron Addition Spectrum in the Supersymmetric t-J Model with Inverse-Square Interaction

    Full text link
    The electron addition spectrum A^+(k,omega) is obtained analytically for the one-dimensional (1D) supersymmetric t-J model with 1/r^2 interaction. The result is obtained first for a small-sized system and its validity is checked against the numerical calculation. Then the general expression is found which is valid for arbitrary size of the system. The thermodynamic limit of A^+(k,omega) has a simple analytic form with contributions from one spinon, one holon and one antiholon all of which obey fractional statistics. The upper edge of A^+(k,omega) in the (k,omega) plane includes a delta-function peak which reduces to that of the single-electron band in the low-density limit.Comment: 5 pages, 1 figure, accepted for publication in Phys. Rev. Let

    Exact dynamical structure factor of the degenerate Haldane-Shastry model

    Full text link
    The dynamical structure factor S(q,ω)S(q,\omega) of the K-component (K = 2,3,4) spin chain with the 1/r^2 exchange is derived exactly at zero temperature for arbitrary size of the system. The result is interpreted in terms of a free quasi-particle picture which is generalization of the spinon picture in the SU(2) case; the excited states consist of K quasi-particles each of which is characterized by a set of K-1 quantum numbers. Divergent singularities of S(q,ω)S(q,\omega) at the spectral edges are derived analytically. The analytic result is checked numerically for finite systems.Comment: 4 pages, 1 figure, accepted for publication in Phys. Rev. Let
    corecore